
周明月

- 所在单位:碳中和未来技术学院
- 所在学科:化学工程与技术
- 个人学位:博士
- 职称名称:副教授
- 教师类别:专任教师
- 导师类型:博士生导师,硕士生导师
- 招生专业:化学工程与技术,化学工程
教育经历
- 2015-09至2020-02, 新加坡国立大学, 材料科学与工程, 博士研究生
- 2011-09至2015-07, 南京大学, 材料化学, 大学本科
个人概况
周明月,中国石油大学(北京),碳中和未来技术学院,副教授/特任岗位教授,博士生导师、硕士生导师。南京大学材料化学专业学士学位(2015年),新加坡国立大学材料科学与工程专业博士学位(2020年),同年在清华大学化工系进行博士后研究并入选清华大学“水木学者”计划,2023年获得中国石油大学(北京)优秀青年学者培育计划支持,2025年入选中国科协青年人才托举工程。已发表30余篇SCI论文,其中以第一作者/共同通讯在Joule, Chem, Angew. Chem. Int. Ed., Adv. Energy Mater.等知名期刊发表文章14篇,论文总引用次数超过2000次。主持承担国家自然科学基金青年基金及中国博士后科学基金面上项目2项。主要从事电化学和能源化学的研究工作,致力于通过电解液设计和关键反应过程调控,结合关键测试表征技术,研制高性能电化学储能器件(液流电池及锂电池)。
部分学术论文
[1] M. Zhou, J.-F. Ding, X.-Q. Ding, L.-P. Hou, P. Shi, J. Xie, B.-Q. Li, J.-Q. Huang, X.-Q. Zhang, and Q. Zhang. Quantifying the Apparent Electron Transfer Number of Electrolyte Decomposition Reactions in Anode-free Batteries. Joule (Cell Sister Journal, IF=46.048), 6(9):2122–2137, 2022.
[2] M. Zhou, X.-Q. Ding, L.-P. Hou, J. Xie, B.-Q. Li, J.-Q. Huang, X.-Q. Zhang, and Q. Zhang. Protocol for Quantitative Nuclear Magnetic Resonance for Deciphering the Electrolyte Decomposition Reactions in Anode-free Batteries. STAR Protocols, 3(4):101867, 2022.
[3] M. Zhou, Y. Chen, M. Salla, H. Zhang, X. Wang, S. R. Mothe, and Q. Wang. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery. Angewandte Chemie International Edition, 59(34):14286–14291, 2020.
[4] M. Zhou, Y. Chen, Q. Zhang, S. Xi, J. Yu, Y. Du, Y.-S. Hu, and Q. Wang. Na3V2(PO4)3 as the Sole Solid Energy Storage Material for Redox Flow Sodium-Ion Battery. Advanced Energy Materials, 9(30):1901188, 2019.
[5] M. Zhou, Q. Huang, T. N. P. Truong, J. Ghilane, Y. G. Zhu, C. Jia, R. Yan, L. Fan, H. Randriamahazaka, and Q. Wang. Nernstian-Potential-Driven Redox-Targeting Reactions of Battery Materials. Chem (Cell Sister Journal), 3(6):1036–1049, 2017.
[6] J. Liu, L. Ren, Y. Wang, X. Lu, M. Zhou (co-corresponding), and W. Liu. A Highly-Stable Bifunctional NiCo2S4 Nanoarray@ Carbon Paper Electrode for Aqueous Polysulfide/iodide Redox Flow Battery. Journal of Power Sources, 561:232607, 2023.
[7] Y. Wang, L. Ren, J. Liu, X. Lu, M. Zhou (co-corresponding), W. Liu, and X. Sun. In-situ Construction of Composite Artificial SEI for High-performance Lithium Metal Battery. ACS Applied Materials & Interfaces, 2022.
[8] Q. Wang, H. Wang, J. Wu, M. Zhou (co-corresponding), W. Liu, and H. Zhou. Advanced Electrolyte Design for Stable Lithium Metal Anode: from Liquid to Solid. Nano Energy, page 105516, 2020.
[9] H. Sun, Y. Li, L. Gao, M. Chang, X. Jin, B. Li, Q. Xu, W. Liu, M. Zhou (co-corresponding), and X. Sun. High Throughput Screening of Single Atomic Catalysts with Optimized Local Structures for the Electrochemical Oxygen Reduction by Machine Learning. Journal of Energy Chemistry, 2023.
[10] L. Ren, X. Cao, Y. Wang, M. Zhou (co-corresponding), W. Liu, H. Xu, H. Zhou, and X. Sun. 3D Porous and Li-rich Sn–Li Alloy Scaffold with Mixed Ionic-Electronic Conductivity for Dendrite-Free Lithium Metal Anodes. Journal of Alloys and Compounds, page 169362, 2023.
[11] J. Wu, S. Zhang, C. Yang, X. Zhang, M. Zhou (co-corresponding), W. Liu, and H. Z. Zhou. Rational Design for Siloxane-Based Electrolyte Enabling Highly Stable Lithium Metal Batteries with High-Nickel Cathode. Energy Storage Materials, page 103043, 2023.
[12] Y. Chen, M. Zhou, Y. Xia, X. Wang, Y. Liu, Y. Yao, H. Zhang, Y. Li, S. Lu, W. Qin, X. Wu, and Q. Wang. A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries. Joule (Cell Sister Journal), 3(9):2255–2267, 2019.
[13] Z. Wang, L.-P. Hou, Z. Li, J.-L. Liang, M. Zhou, C.-Z. Zhao, X. Zeng, B.-Q. Li, A. Chen, X.-Q. Zhang, et al. Highly soluble organic nitrate additives for practical lithium metal batteries. Carbon Energy, 5(1):e283, 2023.
[14] L. Ren, J. Liu, Y. Zhao, Y. Wang, X. Lu, M. Zhou, G. Zhang, W. Liu, H. Xu, and X. Sun. Regulating Electronic Structure of Fe–N4 Single Atomic Catalyst via Neighboring Sulfur Doping for High Performance Lithium–Sulfur Batteries. Advanced Functional Materials, page 2210509, 2023.
[15] Q.-K. Zhang, L.-P. Hou, N. Yao, J. Xie, M. Zhou, X. Chen, B.-Q. Li, X.-Q. Zhang, and Q. Zhang. Insitu Structural Design of Solid Electrolyte Interphase for Long-cycling Lithium Metal Batteries over 400 Wh/kg. Nature Energy, in press, 2023.
[16] P. Shi, Z.-H. Fu, M. Zhou, X. Chen, N. Yao, L.-P. Hou, C.-Z. Zhao, B.-Q. Li, J.-Q. Huang, X.-Q. Zhang, and Q. Zhang. Inhibiting Intercrystalline Reactions of Lithium Metal Anodes with Electrolytes by Heteroatom Concentrated Grain Boundary. Science Advances, 8(33):eabq3445, Aug. 2022.
[17] Y.-W. Song, L. Shen, N. Yao, X.-Y. Li, Z. Li, M. Zhou, X.-Q. Zhang, X. Chen, J.-Q. Huang, B.-Q. Li, and Q. Zhang. Cationic Lithium Polysulfides in Lithium-sulfur Batteries. Chem, 8(11):3031–3050, 2022.
[18] Y.-Y. Wang, X.-Q. Zhang, M. Zhou, and J.-Q. Huang. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Research Energy, 2022.
[19] Y.-X. Zhan, P. Shi, C.-B. Jing, Y. Xiao, , M. Zhou, C.-X. Bi, B.-Q. Li, X. Chen, X.-Q. Zhang, and Q. Zhang. Regulating the Two-Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Anodes. Advanced Functional Materials, page 2206834, 2022.
[20] S.-Y. Sun, X.-Y. Li, N. Yao, J. Xie, C.-B. Jing, M. Zhou, B.-Q. Li, X. Chen, X.-Q. Zhang, and Q. Zhang. The Crucial Role of Electrode Potential of a Working Anode in Dictating the Structural Evolution of Solid Electrolyte Interphase. Angewandte Chemie International Edition, page e202208743, 2022.
[21] S. Huang, H. Zhang, J. Zhuang, M. Zhou, M. Gao, F. Zhang, and Q. Wang. Redox-Mediated Two-Electron Oxygen Reduction Reaction with Ultrafast Kinetics for Zn–Air Flow Battery. Advanced Energy Materials, page 2103622, 2022.
[22] H. Zhang, F. Zhang, J. Yu, M. Zhou, W. Luo, Y. M. Lee, M. Si, and Q. Wang. Redox Targeting-Based Thermally Regenerative Electrochemical Cycle Flow Cell for Enhanced Low-Grade Heat Harnessing. Advanced Materials, 33(5):2006234, 2021.
[23] X.-M. Wang, X.-Q. Zhang, P. Shi, L.-P. Hou, M. Zhou, A. Chen, and Q. Zhang. Glycolide Additives Enrich Organic Components in the Solid Electrolyte Interphase Enabling Stable Ultrathin Lithium Metal Anodes. Materials Chemistry Frontiers, 5(6):2791–2797, 2021.
[24] X. Wang, M. Zhou, F. Zhang, H. Zhang, and Q. Wang. Redox Targeting of Energy Materials. Current Opinion in Electrochemistry, page 100743, 2021.
[25] T. Li, X.-Q. Zhang, N. Yao, Y.-X. Yao, L.-P. Hou, X. Chen, M. Zhou, J.-Q. Huang, and Q. Zhang. Stable Anion-Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie International Edition, 133(42):22865–22869, 2021.
[26] Y. Ji, F. Zhang, M. Zhou, J. Yu, and Q. Wang. Spatially Decoupled Hydrogen Evolution in Alkaline Conditions with a Redox Targeting-based Flow Battery. International Journal of Hydrogen Energy, 45(38):18888–18894, 2020.
[27] J. Yu, M. Salla, H. Zhang, Y. Ji, F. Zhang, M. Zhou, and Q. Wang. A Robust Anionic Sulfonated Ferrocene Derivative for pH-neutral Aqueous Flow Battery. Energy Storage Materials, 29:216–222, 2020.
[28] J. Yu, X. Wang, M. Zhou, and Q. Wang. A Redox Targeting-based Materials Recycling Strategy for Spent Lithium Ion Batteries. Energy & Environmental Science, 12(9):2672–2677, 2019.
[29] M. Wang, B. Han, J. Deng, Y. Jiang, M. Zhou, M. Lucero, Y. Wang, Y. Chen, Z. Yang, A. T. NDiaye, Q. Wang, Z. J. Xu, and Z. Feng. Influence of Fe Substitution into LaCoO3 Electrocatalysts on Oxygen Reduction Activity. ACS Applied Materials & Interfaces, 11(6):5682–5686, 2019.
[30] J. Yu, L. Fan, R. Yan, M. Zhou, and Q. Wang. Redox Targeting-Based Aqueous Redox Flow Lithium Battery. ACS Energy Letters, 3(10):2314–2320, 2018.
[31] Y. G. Zhu, Y. Du, C. Jia, M. Zhou, L. Fan, X. Wang, and Q. Wang. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator. Journal of the American Chemical Society, 139(18):6286–6289, 2017.